CHAPTER 1 LIMITS AND CONTINUITY

1.1 LIMITS (page 2)

Limits are used to explain changes that arise for a particular function when the value of an independent variable approaches a certain value.
$f(x)=\frac{\sin x}{x}, \quad x$ is in radians and $x \neq 0$
What will happen to the value of $f(x)$ as x moves along the x-axis approaching $x=0$?
(a) Table shows x-values approaching 0 from right hand side

	\bullet	\leftarrow	\leftarrow	\leftarrow	\leftarrow	\leftarrow
x	1	0.0001	0.001	0.01	0.1	1
$f(x)$	$?$	0.9999999	0.9999998	0.9999833	0.9983342	0.8414709

When x approaches 0 from right hand side, the value of $f(x)=\frac{\sin x}{x}$ approaches 1 , this limits is written as

$$
\begin{equation*}
\lim _{x \rightarrow 0^{+}} \frac{\sin x}{x}=1 \tag{Rightlimit}
\end{equation*}
$$

(b) Table shows x-values approaching 0 from left side

	\rightarrow	\rightarrow	\rightarrow	\rightarrow	\rightarrow	\bullet
x	-1.0	-0.1	-0.01	-0.001	-0.0001	1
$f(x)$	0.8414709	0.9983342	0.9999833	0.9999998	0.9999999	$?$

$f(x)$ tends to 1 when x approaches 0 form the left hand side and is written as

$$
\lim _{x \rightarrow 0^{-}} \frac{\sin x}{x}=1 \quad \text { (Left Limit) }
$$

(c) summary from (a) and (b)

Since the limits of $f(x)$ from the right hand side and the left hand side are the same and equal to 1, we can write
$\lim _{x \rightarrow 0^{+}} \frac{\sin x}{x}=\lim _{x \rightarrow 0^{-}} \frac{\sin x}{x}=1$
therefore

$$
\lim _{x \rightarrow 0} \frac{\sin x}{x}=1
$$

Graph of $f(x)=\frac{\sin x}{x}, \quad x \neq 0 \quad$ (page 5)

Figure 1.2

Definition 1.1 (Right Limit) - one-sided limit (page 3)
If the value of $f(x)$ tends to a number l_{1} as x approaches x_{0} from the right hand side, then we write

$$
\lim _{x \rightarrow x_{0}^{+}} f(x)=l_{1}
$$

and we say "limit of $f(x)$ as x approaches x_{0} from the right equals $l_{1}{ }^{"}$

Definition 1.2 (Left Limit) - one-sided limit (page 4)
If the value of $f(x)$ tends to a number l_{2} as x approaches x_{0} from the left hand side, then we write

$$
\lim _{x \rightarrow x_{0}^{-}} f(x)=l_{2}
$$

Definition 1.3 (Limit of a Function) (page 5)
If the limit from the left and the right hand side of $f(x)$ has the same value i.e

$$
\lim _{x \rightarrow x_{0}^{-}} f(x)=\lim _{x \rightarrow x_{0}^{+}} f(x)=l
$$

then $\lim _{x \rightarrow x_{0}} f(x)$ exist and it is written as $\lim _{x \rightarrow x_{0}} f(x)=l$
However, if either the limit from the left or that from the right does not exist, or if $\quad \lim _{x \rightarrow x_{0}^{-}} f(x) \neq \lim _{x \rightarrow x_{0}^{+}} f(x)$
then $\lim _{x \rightarrow x_{0}} f(x)$ does not exist.

Example \& Exercise: (another transparency)

Exercise at home: (tutorial 1)

Do Quiz 1 A, no. 1-4 (page 10)

Notes:

$$
\lim _{x \rightarrow 0} \frac{\sin x}{x}=1
$$

$$
\lim _{x \rightarrow 0} \frac{1-\cos x}{x}=0
$$

(see Example 1.5, page 8)

1.2 CASES OF NON-EXISTENT LIMITS (page 12)

Example 1.9 (page 14):

Sketch the graph $y=\frac{2}{x}$. Hence evaluate $\lim _{x \rightarrow 0} \frac{2}{x}$.

Solution:

This function is not determine at $x=0$. For $x \rightarrow 0$,

	\rightarrow	\rightarrow	\rightarrow	\rightarrow	\bullet	\leftarrow	\leftarrow	\leftarrow	\leftarrow
x	-1	-0.1	-0.01	-0.001	0	0.001	0.01	0.1	1
$f(x)$	-2	-20	-200	-2000	$?$	2000	200	20	2

Figure 1.10

As x approaches 0 from the left hand side, the value of $f(x)$ becomes smaller and decreases indefinitely. Hence $f(x)$ does not approaches a fixed definite value.
$\lim _{x \rightarrow 0^{-}} \frac{2}{x}$ does not exist and $\lim _{x \rightarrow 0^{-}} \frac{2}{x}=-\infty$

As x approaches 0 from the right hand side, the value of $f(x)$ becomes bigger and increases indefinitely. Hence $f(x)$ also does not approaches a fixed definite value.
$\lim _{x \rightarrow 0^{+}} \frac{2}{x}$ does not exist and $\lim _{x \rightarrow 0^{+}} \frac{2}{x}=+\infty$

Both values of the limits have different sign, then $\lim _{x \rightarrow 0} \frac{2}{x}$ does not exist.

Exercise at home: (tutorial 1)
 Do Quiz 1 B, no. 1 - 3 (page 15)

1.3 LIMITS AT INFINITY (page 17)

Example 1.12 (page 18):
Sketch the graph $y=\frac{2}{x}$. Hence evaluate $\operatorname{had}_{x \rightarrow+\infty} \frac{2}{x}$ and $\lim _{x \rightarrow-\infty} \frac{2}{x}$.

Solution:

For $x \rightarrow \pm \infty$

	\leftarrow	\leftarrow	\leftarrow	\leftarrow	\bullet	\rightarrow	\rightarrow	\rightarrow	\rightarrow
x	-1000	-100	-10	-1	0	1	10	100	1000
$f(x)$	-0.002	-0.02	-0.2	-2	$?$	2	0.2	0.02	0.002

Graph same as Figure 1.10.

As x approaches $+\infty$, the value of $f(x)$ tends to zero.

$$
\lim _{x \rightarrow+\infty} \frac{2}{x}=0
$$

As x approaches $-\infty$, the value of $f(x)$ also tends to zero.

$$
\lim _{x \rightarrow-\infty} \frac{2}{x}=0
$$

Note:

$$
\lim _{x \rightarrow \infty}\left(1+\frac{1}{x}\right)^{x}=e \quad \lim _{x \rightarrow 0}(1+x)^{1 / x}=e
$$

(See Example 1.14, page 18)

Exercise:

By referring to the figure below, find

a) $\lim _{x \rightarrow-2^{-}} f(x)$
b) $\lim _{x \rightarrow-2^{+}} f(x)$
c) $\lim _{x \rightarrow-2} f(x)$
d) $f(-2)$
e) $\lim _{x \rightarrow-\infty} f(x)$
f) $\lim _{x \rightarrow+\infty} f(x)$

Exercise at home: (tutorial 1)

Do Quiz 1 C, no. 1-4 (page 20)

Exercise at home: (tutorial 1)

Do EXERCISE 1, no. 1-4, 7 (page 46)

1.4 COMPUTATIONAL METHODS OF LIMIT (page 21)

Theorem 1.1 (Basic Properties of Limits) (page 22)

Suppose a, k and n are real numbers. The limit of each of these expressions is as follows
(a) $\lim _{x \rightarrow a} k=k$
(b) $\lim _{x \rightarrow a} x=a$
(c) $\lim _{x \rightarrow a} x^{n}=a^{n}$

Example (page 23):

(a) $\lim _{x \rightarrow 5} 3$; $\lim _{x \rightarrow+\infty} 3$
(b) $\lim _{x \rightarrow-2} x ; \lim _{\delta x \rightarrow 0} \delta x ; \quad \lim _{t \rightarrow \infty} t$
(C) $\lim _{\delta x \rightarrow-\frac{1}{2}}(\delta x)^{3} ; \quad \lim _{t \rightarrow+\infty} t^{4} ; \lim _{y \rightarrow-\infty} y^{5}$
(Corrections on the book)

Notes: (extra)

$$
\begin{array}{ll}
\lim _{x \rightarrow+\infty} x^{n}=+\infty, & n=1,2,3, \ldots \\
\lim _{x \rightarrow-\infty} x^{n}= \begin{cases}-\infty, & n=1,3,5, \ldots \text { (odd }) \\
+\infty, & n=2,4,6, \ldots \text { (even })\end{cases}
\end{array}
$$

Example:

a) $\lim _{x \rightarrow+\infty} x^{3}$
b) $\lim _{x \rightarrow+\infty} x^{6}$
c) $\lim _{x \rightarrow-\infty} x^{5}$
d) $\lim _{x \rightarrow-\infty} x^{4}$

Theorem 1.2 (Properties of Limits) (page 24)

Let $f(x)$ and $g(x)$ be two functions. If the limits of $f(x)$ and $g(x)$ exist at a particular point, then
(a) $\lim [k f(x)]=k \lim f(x) ; \quad k$ is a constant
(b) $\lim [f(x) \pm g(x)]=\lim f(x) \pm \lim g(x)$
(c) $\lim [f(x) \cdot g(x)]=\lim f(x) \cdot \lim g(x)$
(d) $\lim \frac{f(x)}{g(x)}=\frac{\lim f(x)}{\lim g(x)}, \quad$ with condition $\lim g(x) \neq 0$
(e) $\lim [f(x)]^{n}=[\lim f(x)]^{n}$
(f) $\lim \sqrt[n]{f(x)}=\sqrt[n]{\lim f(x)}, \quad$ with condition $\lim f(x) \geq 0$ if n is even

Example (page 24 \& 25):
(a) $\lim _{x \rightarrow-2} 5 x-5 \quad ; \quad \lim _{y \rightarrow-2} \sqrt{5 y^{2}-4}$
(b) $\lim _{t \rightarrow 1} \frac{t-1}{t+3} \quad ; \quad \lim _{x \rightarrow 2} \frac{x^{3}+8}{x+2}$

Exercise:

Evaluate the limits of the following expressions
a) $\lim _{x \rightarrow 1}(\sqrt{3 x-1}+4)$
b) $\lim _{x \rightarrow 4}\left(\frac{3 x^{2}+x-2}{2 x^{3}+5 x+2}\right)$

Remarks:

If both the numerator and denominator of a rational functions equal to zero as x approaches a, this means:
(a) The numerator and denominator have a common factor $(x-a)$ that must be cancelled off before the limits are evaluated. (page 25)
(b) If involve the $\sqrt{ }$ term, multiply the numerator and denominator with its conjugate.
(c) If involve the trigonometric function, use the result

$$
\begin{aligned}
& \lim _{x \rightarrow 0} \frac{\sin x}{x}=1, \lim _{x \rightarrow 0} \frac{1-\cos x}{x}=0 \text { and } \\
& \lim _{k x \rightarrow 0} \frac{\sin \mathrm{k} x}{k x}=\lim _{x \rightarrow 0} \frac{\sin \mathrm{k} x}{k x}=1 \quad \text { (page 27) }
\end{aligned}
$$

Example for (a) (page 26):

$$
\lim _{x \rightarrow-3} \frac{x^{2}+6 x+9}{x+3}
$$

Example for (b) (page 26):
$\lim _{h \rightarrow 0} \frac{\sqrt{4+h}-2}{h}$

Example for (c) (page 26 \& 28):

$$
\lim _{x \rightarrow 0} \frac{\sin 3 x}{2 x} \quad ; \quad \lim _{x \rightarrow 0} \frac{x}{\sin x}
$$

Exercise:

Evaluate the following limits.
a) $\lim _{x \rightarrow 4}\left(\frac{x^{2}-16}{x-4}\right)$
b) $\lim _{x \rightarrow 0}\left(\frac{x}{\sqrt{x+1}-1}\right)$
c) $\lim _{h \rightarrow 0} \frac{\sin 2 h}{\sin 3 h}$

Remarks (page 30):

To evaluate the limits of a rational function $f(x)$ when x approaches positive or negative infinity,

$$
\lim _{x \rightarrow+\infty} f(x) \quad \text { or } \quad \lim _{x \rightarrow-\infty} f(x)
$$

Step 1: Divide the numerator and denominator of $f(x)$ with x^{n}, where n is the highest power of x in the denominator's term.
 Step 2: Use the limits theorem.

Example (page 31):

$$
\lim _{x \rightarrow+\infty} \frac{3 x-5}{6 x+8} \quad ; \quad \lim _{x \rightarrow-\infty} \frac{\sqrt{3 x^{4}+x}}{x^{2}-8}
$$

Exercise:

Evaluate the limits of each of the following expressions.
a) $\lim _{s \rightarrow+\infty} \frac{5 s^{2}-7}{3 s^{3}+s}$
b) $\lim _{y \rightarrow+\infty} \sqrt{\frac{4 y^{2}-1}{y^{2}+1}}$

Exercise at home: (tutorial 2)

Do Quiz 1 D, no. 1d), 1e), 3a), 3b), 4a), 4c), 5a), 5c) (page 32)

1.6 CONTINUITY (page 40)

Definition 1.5 (Continuity) (page 41)

A function $f(x)$ is said to be continuous at the point $\boldsymbol{x}=\boldsymbol{a}$ if the following conditions are satisfied.

1. The function $f(x)$ is defined at $x=a$, that is $f(a)$ exist.
2. $\lim _{x \rightarrow a} f(x)$ exist.
3. $\lim _{x \rightarrow a} f(x)=f(a)$.

Note (page 41):
If one or more of the above conditions is not satisfied, then the function $f(x)$ is said to be not continuous at $x=a$, and $x=a$ is known as a point of discontinuity.

(page 40) | The value of $f(x)$ exist for |
| :--- |
| every value of x. In other |
| words, $f(x)$ is defined for |
| every value of x. |

(a)

The curve has a hole at the point $x=a, f(x)$ is not defined at that point
(c)

The function $f(x)$ is defined but $\lim _{x \rightarrow a} f(x)$ does not exist
(b)

The function $f(x)$ is defined but $\lim _{x \rightarrow a} f(x)$ does not exist
(d)

The function $f(x)$ is defined at $x=a$ and $\lim _{x \rightarrow a} f(x)$ exist but

$$
\lim _{x \rightarrow a} f(x)=f(a)
$$

Remarks: (page 44)
The followings are a few basic results about continuity: If $f(x)$ and $g(x)$ are continuous functions at $x=a$, then
i. $\quad f(x) \pm g(x)$ are continuous at $x=a$
ii. $f(x) \cdot g(x)$ is continuous at $x=a$
iii. $\frac{f(x)}{g(x)}$ is continuous at $x=a$, if $g(x) \neq 0$, and discontinuous at $x=a$ if $g(a)=0$

Example (page 42)

Find the points of discontinuity, if they exist, for the following functions.

$$
\begin{aligned}
& f(x)=x^{2} \quad ; \quad f(x)=|x| \quad ; \quad f(x)=\frac{1}{x} \\
& f(x)= \begin{cases}-x, & x<0 \\
x^{2}, & x>0\end{cases}
\end{aligned}
$$

Exercise:

Given

$$
f(x)= \begin{cases}-1, & x<0 \\ 2 x+1, & x \geq 0\end{cases}
$$

Find the $\lim _{x \rightarrow 0} f(x)$. Is this function continuous at $x=0$?

Exercise at home: (tutorial 2)

Do Quiz 1 F, no. 1 (page 45)

Exercise at home: (tutorial 2)

Do EXERCISE 1, no. 5, 8b), 8e), 9a), 10a), 11a), 12a), 12c),
13a), 13e), 14a), 14c), 15, 18b), 18c), 19a), 19b), 19f)
(page 46-49)

