CHAPTER 1 LIMITS AND CONTINUITY

1.1 LIMITS (page 2)

Limits are used to explain changes that arise for a particular function when the value of an independent variable approaches a certain value.

 $f(x) = \frac{\sin x}{x}$, x is in radians and $x \neq 0$

What will happen to the value of f(x) as x moves along the x-axis approaching x=0?

(a) Table shows x-values approaching 0 from right hand side

	•	~	~	←	~	\leftarrow	
x	1	0.0001	0.001	0.01	0.1	1	
f(x)	?	0.9999999	0.9999998	0.9999833	0.9983342	0.8414709	

When x approaches 0 from right hand side, the value of

 $f(x) = \frac{\sin x}{x}$ approaches 1, this limits is written as $\lim_{x \to 0^{+}} \frac{\sin x}{x} = 1$ (Right limit)

(b) Table shows *x*-values approaching 0 from left side

	\rightarrow \rightarrow		\rightarrow	\rightarrow	\rightarrow	•
x	-1.0	-0.1	-0.01	-0.001	-0.0001	1
f(x)	0.8414709	0.9983342	0.9999833	0.9999998	0.9999999	?

f(*x*) tends to 1 when *x* approaches 0 form the left hand side and is written as

$$\lim_{x \to 0^{-}} \frac{\sin x}{x} = 1$$
 (Left Limit)

(c) summary from (a) and (b)

Since the limits of f(x) from the right hand side and the left hand side are the **same** and **equal to 1**, we can write

Figure 1.2

-1

Definition 1.1 (Right Limit) – one-sided limit (page 3)

If the value of f(x) tends to a number l_1 as x approaches

 x_0 from the right hand side, then we write

$$\lim_{x \to x_0^+} f(x) = l_1$$

and we say "limit of f(x) as x approaches x_0 from the right equals l_1 "

 x_0 from the left hand side, then we write

 $\lim_{x \to x_0^-} f(x) = l_2$

Definition 1.3 (Limit of a Function) (page 5)

If the limit from the left and the right hand side of f(x) has

the same value i.e

$$\lim_{x \to x_0^-} f(x) = \lim_{x \to x_0^+} f(x) = l$$

then $\lim_{x \to x_0} f(x)$ **exist** and it is written as $\lim_{x \to x_0} f(x) = l$

However, if either the limit from the left or that from the right does not exist,

or if
$$\lim_{x \to x_0^-} f(x) \neq \lim_{x \to x_0^+} f(x)$$

then $\lim_{x \to x_0} f(x)$ does not exist.

Example & Exercise: (another transparency)

Exercise at home: (tutorial 1) Do Quiz 1 A, no. 1 – 4 (page 10)

Notes:

$$\lim_{x \to 0} \frac{\sin x}{x} = 1$$
(see Example 1.5, page 8)

1.2 CASES OF NON-EXISTENT LIMITS (page 12)

Example 1.9 (page 14):

Sketch the graph $y = \frac{2}{x}$. Hence evaluate $\lim_{x \to 0} \frac{2}{x}$.

Solution:

This function is not determine at x = 0. For $x \rightarrow 0$,

	\rightarrow	\rightarrow	\rightarrow	\rightarrow	•	\leftarrow	\leftarrow	←	←
x	-1	-0.1	-0.01	-0.001	0	0.001	0.01	0.1	1
f(x)	-2	-20	-200	-2000	?	2000	200	20	2

As x approaches 0 from the left hand side, the value of f(x) becomes smaller and decreases indefinitely. Hence f(x) does not approaches a fixed definite value.

$$\lim_{x \to 0^-} \frac{2}{x} \text{ does not exist and } \lim_{x \to 0^-} \frac{2}{x} = -\infty$$

As x approaches 0 from the right hand side, the value of f(x) becomes bigger and increases indefinitely. Hence f(x) also does not approaches a fixed definite value.

 $\lim_{x \to 0^+} \frac{2}{x} \text{ does not exist and } \lim_{x \to 0^+} \frac{2}{x} = +\infty$

Both values of the limits have different sign,

then $\lim_{x \to 0} \frac{2}{x}$ does not exist.

Exercise at home: (tutorial 1) Do Quiz 1 B, no. 1 – 3 (page 15)

1.3 LIMITS AT INFINITY (page 17)

Example 1.12 (page 18):

Sketch the graph $y = \frac{2}{x}$. Hence evaluate $\lim_{x \to +\infty} \frac{2}{x}$ and $\lim_{x \to -\infty} \frac{2}{x}$.

Chapter 1 DACS 1222 Lok 2004/05

Solution:

For $x \to \pm \infty$

	←	←	←	\leftarrow	•	\rightarrow	\rightarrow	\rightarrow	\rightarrow
x	-1000	-100	-10	-1	0	1	10	100	1000
f(x)	-0.002	-0.02	-0.2	-2	?	2	0.2	0.02	0.002

Graph same as Figure 1.10.

As x approaches $+\infty$, the value of f(x) tends to zero.

 $\lim_{x \to +\infty} \frac{2}{x} = 0$

As x approaches $-\infty$, the value of f(x) also tends to zero.

 $\lim_{x \to -\infty} \frac{2}{x} = 0$

Note:

$$\lim_{x \to \infty} \left(1 + \frac{1}{x}\right)^x = e$$

$$\lim_{x \to 0} \left(1 + x\right)^{1/x} = e$$

(See Example 1.14, page 18)

Exercise:

By referring to the figure below, find

a)
$$\lim_{x \to -2^-} f(x)$$

b) $\lim_{x \to -2^+} f(x)$
c) $\lim_{x \to -2} f(x)$
d) $f(-2)$
e) $\lim_{x \to -\infty} f(x)$
f) $\lim_{x \to +\infty} f(x)$

Exercise at home: (tutorial 1) Do Quiz 1 C, no. 1 – 4 (page 20)

Exercise at home: (tutorial 1) Do EXERCISE 1, no. 1 – 4, 7 (page 46)

1.4 COMPUTATIONAL METHODS OF LIMIT (page 21)

Theorem 1.1 (Basic Properties of Limits) (page 22) Suppose a, k and n are real numbers. The limit of each of these expressions is as follows

(a)
$$\lim_{x \to a} k = k$$

(b)
$$\lim_{x \to a} x = a$$

(c)
$$\lim_{x \to a} x^n = a^n$$

Example (page 23):

Notes: (extra)

 $\lim_{x \to +\infty} x^n = +\infty, \qquad n = 1, 2, 3, \dots$ $\lim_{x \to -\infty} x^n = \begin{cases} -\infty, & n = 1, 3, 5, \dots (odd) \\ +\infty, & n = 2, 4, 6, \dots (even) \end{cases}$ **Example:**a) $\lim_{x \to +\infty} x^3 \qquad \text{b)} \quad \lim_{x \to +\infty} x^6 \qquad \text{c)} \quad \lim_{x \to -\infty} x^5 \qquad \text{d)} \quad \lim_{x \to -\infty} x^4$

Theorem 1.2 (Properties of Limits) (page 24) Let f(x) and g(x) be two functions. If the limits of f(x) and g(x)exist at a particular point, then (a) $\lim [kf(x)] = k \lim f(x)$; k is a constant (b) $\lim [f(x) \pm g(x)] = \lim f(x) \pm \lim g(x)$ (c) $\lim [f(x) \cdot g(x)] = \lim f(x) \cdot \lim g(x)$ (d) $\lim \frac{f(x)}{g(x)} = \frac{\lim f(x)}{\lim g(x)}$, with condition $\lim g(x) \neq 0$ (e) $\lim [f(x)]^n = [\lim f(x)]^n$ (f) $\lim \sqrt[n]{f(x)} = \sqrt[n]{\lim f(x)}$, with condition $\lim f(x) \ge 0$ $\lim f(x) = \sqrt[n]{\lim f(x)}$, with condition $\lim f(x) \ge 0$ $\lim f(x) = \sqrt[n]{\lim f(x)}$, with condition $\lim f(x) \ge 0$ $\lim f(x) = \sqrt[n]{\lim f(x)}$, $\lim f(x) = \sqrt[n]{\lim f(x)}$, $\lim f(x) \ge 0$ $\lim f(x) \ge 0$

Example (page 24 & 25):

(a) $\lim_{x \to -2} 5x - 5$; $\lim_{y \to -2} \sqrt{5y^2 - 4}$ (b) $\lim_{t \to 1} \frac{t - 1}{t + 3}$; $\lim_{x \to 2} \frac{x^3 + 8}{x + 2}$

Exercise:

Evaluate the limits of the following expressions

a)
$$\lim_{x \to 1} (\sqrt{3x-1}+4)$$
 b) $\lim_{x \to 4} \left(\frac{3x^2+x-2}{2x^3+5x+2}\right)$

Remarks:

If both the numerator and denominator of a rational functions equal to zero as *x* approaches a, this means:

(a) The numerator and denominator have a common factor (x-a) that must be cancelled off before the limits are evaluated. (page 25)

(b) If involve the $\sqrt{}$ term, multiply the numerator and denominator with its conjugate.

(c) If involve the trigonometric function, use the result

$$\lim_{x \to 0} \frac{\sin x}{x} = 1, \quad \lim_{x \to 0} \frac{1 - \cos x}{x} = 0 \text{ and}$$
$$\lim_{kx \to 0} \frac{\sin kx}{kx} = \lim_{x \to 0} \frac{\sin kx}{kx} = 1 \quad \text{(page 27)}$$

Example for (a) (page 26):

$$\lim_{x \to -3} \frac{x^2 + 6x + 9}{x + 3}$$

Example for (b) (page 26):

 $\lim_{h \to 0} \frac{\sqrt{4+h}-2}{h}$

Example for (c) (page 26 & 28):

 $\lim_{x \to 0} \frac{\sin 3x}{2x} \qquad ; \qquad \lim_{x \to 0} \frac{x}{\sin x}$

Exercise:

Evaluate the following limits.

a)
$$\lim_{x \to 4} \left(\frac{x^2 - 16}{x - 4} \right)$$
 b) $\lim_{x \to 0} \left(\frac{x}{\sqrt{x + 1} - 1} \right)$ c) $\lim_{h \to 0} \frac{\sin 2h}{\sin 3h}$

Remarks (page 30):

To evaluate the limits of a rational function f(x) when x

approaches positive or negative infinity,

 $\lim_{x \to +\infty} f(x) \qquad \text{or} \quad \lim_{x \to -\infty} f(x)$

<u>Step 1</u>: Divide the numerator and denominator of *f(x)* with *xⁿ*, where *n* is the highest power of *x* in the denominator's term.
 <u>Step 2</u>: Use the limits theorem.

Example (page 31):

$$\lim_{x \to +\infty} \frac{3x - 5}{6x + 8} \qquad ; \qquad \lim_{x \to -\infty} \frac{\sqrt{3x^4 + x}}{x^2 - 8}$$

Exercise:

Evaluate the limits of each of the following expressions.

a) $\lim_{s \to +\infty} \frac{5s^2 - 7}{3s^3 + s}$ b) $\lim_{y \to +\infty} \sqrt{\frac{4y^2 - 1}{y^2 + 1}}$

Exercise at home: (tutorial 2)

Do Quiz 1 D, no. 1d), 1e), 3a), 3b), 4a), 4c), 5a), 5c) (page 32)

1.6 CONTINUITY (page 40)

Definition 1.5 (Continuity) (page 41)

A function f(x) is said to be **continuous at the point** x = a

if the following conditions are satisfied.

- 1. The function f(x) is defined at x = a, that is f(a) exist.
- 2. $\lim_{x \to a} f(x)$ exist.
- 3. $\lim_{x \to a} f(x) = f(a).$

Note (page 41):

If one or more of the above conditions is not satisfied, then the function f(x) is said to be **not continuous at** x = a, and x = a is known as a **point of discontinuity**.

The value of f(x) exist for every value of x. In other words, f(x) is defined for every value of x.

The curve has a hole at the point x = a, f(x) is not defined at that point

The function f(x) is defined but $\lim_{x \to a} f(x)$ does not exist

The function f(x) is defined at x = a and $\lim_{x \to a} f(x)$ exist but $\lim_{x \to a} f(x) = f(a)$

Remarks: (page 44)

The followings are a few basic results about continuity: If f(x) and g(x) are continuous functions at x = a, then

- i. $f(x) \pm g(x)$ are continuous at x = a
- ii. $f(x) \cdot g(x)$ is continuous at x = a

iii.
$$\frac{f(x)}{g(x)}$$
 is continuous at $x = a$, if $g(x) \neq 0$, and

discontinuous at x = a if g(a) = 0

Example (page 42)

Find the points of discontinuity, if they exist, for the following functions.

$$f(x) = x^{2} \qquad ; \qquad f(x) = |x| \qquad ; \qquad f(x) = \frac{1}{x} \qquad ;$$
$$f(x) = \begin{cases} -x, & x < 0\\ x^{2}, & x > 0 \end{cases}$$

Exercise:

Given

$$f(x) = \begin{cases} -1, & x < 0\\ 2x+1, & x \ge 0 \end{cases}$$

Find the $\lim_{x\to 0} f(x)$. Is this function continuous at x = 0?

Exercise at home: (tutorial 2) Do Quiz 1 F, no. 1 (page 45)

Exercise at home: (tutorial 2)
Do EXERCISE 1, no. 5, 8b), 8e), 9a), 10a), 11a), 12a), 12c), 13a), 13e), 14a), 14c), 15, 18b), 18c), 19a), 19b), 19f)
(page 46-49)