CHAPTER TWO

COMPLEX NUMBERS

Introduction

In this chapter, we will work with imaginary numbers. Up until now, you've been told that you can't take the square root of a negative number. That's because you had no numbers that, when squared, were negative. Every number was positive after you squared it. So you couldn't very well square-root a negative and expect to come up with anything sensible. Now, however, you can take the square root of a negative number, but it involves using a new number to do it. Anyway, this new number is called "i", standing for "imaginary", because "everybody knew" that i wasn't "real". The imaginary is defined to be $i = \sqrt{-1}$.

Objectives

After completing these tutorials, students should be able to:

- ❖ Simplify the given complex number expressions.
- ❖ Find the conjugate of complex number.
- **\diamondsuit** Express the given fractions in the form a+bi and represent each on the Argand diagram.
- ❖ Solve the given complex equations.
- ❖ Find the modulus and argument of the given complex numbers
- ❖ Express the complex number in polar form using its principal argument in radiant units.
- Use De Moivre's Theorem to simplify complex number expressions.
- Express the complex number in the exponential form (Euler's formula).

Simplify

(a)
$$(3+4i)(3-4i)$$

Solution:

$$(3+4i)(3-4i)$$

 $= 9-12i+12i-16i^2$
 $= 9-16(-1)$
 $= 25$

(b)
$$(a+bi)^2$$

Solution:

$$\overline{(a+bi)^2}$$

$$= a^2 + 2abi + b^2i^2$$

$$= a^2 + 2abi + b^2(-1)$$

$$= a^2 - b^2 + 2abi$$

(c)
$$i(1+i)(2+i)$$

Solution:

$$i(1+i)(2+i)$$

 $= i(2+i+2i+i^2)$
 $= i(2+3i-1)$
 $= i(1+3i)$
 $= i+3i^2$
 $= i-3$

Question 2

Find the conjugate of z.

(a)
$$z = -i$$

Solution:

$$\overline{z} = i$$

(b)
$$z = 10 + 2i$$

Solution:

$$\overline{z} = 10 - 2i$$

Express the following fractions in the form a + bi and represent each on the Argand diagram.

(a)
$$\frac{2}{1-i}$$

Solution:

$$\frac{2}{1-i}$$

$$= \frac{2}{1-i} \times \frac{1+i}{1+i}$$

$$= \frac{2(1+i)}{1^2 - i^2}$$

$$= \frac{2(1+i)}{1+1}$$

$$= \frac{2(1+i)}{2}$$

$$= 1+i$$

(b)
$$\frac{3+i}{4-3i}$$

Solution:

$$\frac{3+i}{4-3i}$$

$$= \frac{3+i}{4-3i} \times \frac{4+3i}{4+3i}$$

$$= \frac{(3+i)(4+3i)}{16-9i^2}$$

$$= \frac{12+9i+4i+3i^2}{16-9i^2}$$

$$= \frac{12+13i-3}{16+9}$$

$$= \frac{9+13i}{25}$$

$$= \frac{9}{25} + \frac{13}{25}i$$

(c)
$$\frac{4i}{4+3i}$$

(d)
$$\frac{10}{i}$$

$$\frac{10}{i}$$

$$= \frac{10}{i} \times \frac{-i}{-i}$$

$$= \frac{-10i}{-i^2}$$

$$= -10i$$

Question 4

Solve the following equations for x and y.

(a)
$$x + yi = (3+i)(2-3i)$$

Solution:

$$x + yi = (3+i)(2-3i)$$

 $= 6-9i+2i-3i^2$
 $= 6-7i-3(-1)$
 $= 9-7i$
 $\therefore x = 9, y = -7$

(b)
$$3+4i = (x+yi)(1+i)$$

$$3+4i = (x+yi)(1+i)$$

$$= x+xi+yi+yi^{2}$$

$$= x-y+(x+y)i$$

$$\Rightarrow x-y=3---(I)$$

$$x+y=4---(II)$$

$$(I)+(II)$$

$$2x=7$$

$$x=\frac{7}{2}$$

Substituted

$$x = \frac{7}{2} \text{ into } (II)$$

$$\frac{7}{2} + y = 4$$

$$y = \frac{1}{2}$$

$$\therefore x = \frac{7}{2}, y = \frac{1}{2}$$

$$(c) \quad \frac{2+5i}{1-i} = x + yi$$

$$\frac{2+5i}{1-i} = x + yi$$

$$x + yi = \frac{2+5i}{1-i}$$

$$= \frac{2+5i}{1-i} \times \frac{1+i}{1+i}$$

$$= \frac{(2+5i)(1+i)}{1-i^2}$$

$$= \frac{2+2i+5i+5i^2}{2}$$

$$= \frac{2+7i-5}{2}$$

$$= \frac{-3+7i}{2}$$

$$= \frac{-3}{2} + \frac{7}{2}i$$

$$\therefore x = -\frac{3}{2}, y = \frac{7}{2}$$

(d)
$$x + yi = 2$$

Solution:

$$x + yi = 2$$

$$= 2 + 0i$$

$$\therefore x = 2, y = 0$$

Find the modulus and argument of the following complex numbers

(a)
$$(1-i)(4+3i)$$

Solution:

$$z = (1-i)(4+3i)$$

$$= 4+3i-4i-3i^{2}$$

$$= 4-i-3(-1)$$

$$= 7-i$$

$$|z| = \sqrt{7^{2}+(-1)^{2}}$$

$$= \sqrt{49+1}$$

$$= \sqrt{50}$$

$$q = tan^{-1}(\frac{-1}{7})$$

$$= -0.14$$

$$\frac{1+7i}{1+i}$$

Solution:

$$z = \frac{1+7i}{1+i}$$

$$= \frac{1+7i}{1+i} \times \frac{1-i}{1-i}$$

$$= \frac{(1+7i)(1-i)}{1-i^2}$$

$$= \frac{1-i+7i-7i^2}{2}$$

$$= \frac{1+6i-7(-1)}{2}$$

$$= \frac{8+6i}{2}$$

$$= 4+3i$$

$$|z| = \sqrt{4^2 + 3^2}$$
$$= \sqrt{16 + 9}$$
$$= \sqrt{25}$$
$$= 5$$

$$q = tan^{-1}(\frac{3}{4})$$

= 0.64

Given $z_1 = -2 + i$ and $z_2 = 1 - i$. Find $|z_1 z_2|$.

Solution:

$$\overline{z_1 = -2 + i}$$

$$|z_1| = \sqrt{(-2)^2 + 1^2}$$

$$= \sqrt{5}$$

$$z_2 = 1 - i$$

$$|z_2| = \sqrt{1^2 + (-1)^2}$$

$$= \sqrt{2}$$

$$|z_1 z_2|$$

$$= |z_1||z_2|$$

$$= \sqrt{5} \times \sqrt{2}$$

$$= \sqrt{10}$$

Question 7

Express the complex number in polar form using its principal argument in radiant units.

(a)
$$z = -3 + 2i$$

Solution: z = -3 + 2i

$$z = -3 + 2i$$

$$r = |z|$$

$$= \sqrt{(-3)^2 + 2^2}$$

$$= \sqrt{13}$$

$$q = tan^{-1}(\frac{2}{-3}) = 2.554$$

$$z = r(\cos q + i \sin q)$$

= $\sqrt{13} (\cos 2.554 + i \sin 2.554)$

(b)
$$z = 2\sqrt{3} - \sqrt{3}i$$

Solution:
$$z = 2\sqrt{3} - \sqrt{3}i$$

$$r = |z|$$

$$= \sqrt{(2\sqrt{3})^2 + (-\sqrt{3})^2}$$

$$= \sqrt{12 + 3}$$

$$= \sqrt{15}$$

$$q = \tan^{-1} \left(\frac{-\sqrt{3}}{2\sqrt{3}} \right)$$

$$= -\tan^{-1} \left(\frac{\sqrt{3}}{2\sqrt{3}} \right)$$

$$= -\tan^{-1} \left(\frac{1}{2} \right)$$

$$= -0.464$$

$$z = r(\cos q + i \sin q)$$

$$= \sqrt{15} \left(\cos(-0.464) + i \sin(-0.464) \right)$$

By using De Moivre's Theorem, find $(2+2i)^{\frac{1}{3}}$. Give your answer in polar form.

Solution:

Let

$$z = 2 + 2i$$

$$|z| = \sqrt{2^2 + 2^2}$$
$$= \sqrt{8}$$
$$= 2\sqrt{2}$$

$$q = tan^{-1}(\frac{2}{2})$$
$$= tan^{-1}(1)$$
$$= \frac{p}{4}$$

De Moivre's Theorem

$$z^{t} = (x + yi)^{t} = r(\cos tq + i\sin tq)$$

$$\Rightarrow (2 + 2i)^{\frac{1}{3}} = r(\cos \frac{1}{3}q + i\sin \frac{1}{3}q)$$

$$= 2\sqrt{2}\left(\cos(\frac{1}{3} \times \frac{p}{4}) + i\sin(\frac{1}{3} \times \frac{p}{4})\right)$$

$$= 2\sqrt{2}\left(\cos\frac{p}{12} + i\sin\frac{p}{12}\right)$$

Question 9

By using De Moivre's Theorem find

(a)
$$(1+i)^5$$

Solution:

Let
$$z = 1 + i$$

$$|z| = \sqrt{1^2 + 1^2}$$

$$= \sqrt{2}$$

$$q = \tan^{-1} \left(\frac{1}{1}\right)$$

$$= \tan^{-1}(1)$$

$$= \frac{p}{4}$$

De Moivre's Theorem

$$z^{t} = (x + yi)^{t} = r(\cos tq + i\sin tq)$$

$$\Rightarrow (1+i)^5 = r\left(\cos 5q + i\sin 5q\right)$$
$$= \sqrt{2}\left(\cos(5 \times \frac{p}{4}) + i\sin(5 \times \frac{p}{4})\right)$$
$$= \sqrt{2}\left(\cos\frac{5p}{4} + i\sin\frac{5p}{4}\right)$$

(b)
$$(\sqrt{3}-i)^9$$

Let
$$z = \sqrt{3} - i$$

$$\left|z\right| = \sqrt{3^2 + (-1)^2}$$
$$= \sqrt{10}$$

$$q = \tan^{-1} \left(\frac{-1}{\sqrt{3}} \right)$$
$$= -\frac{p}{6}$$

De Moivre's Theorem

$$z' = (x + yi)^{t} = r(\cos tq + i\sin tq)$$

$$\Rightarrow (\sqrt{3} - i)^{9} = r(\cos 9q + i\sin 9q)$$

$$= \sqrt{10} \left(\cos(9 \times \frac{-p}{6}) + i\sin(9 \times \frac{-p}{6})\right)$$

$$= \sqrt{10} \left(\cos(\frac{-3p}{2}) + i\sin(\frac{-3p}{2})\right)$$

Express the complex number in the exponential form (Euler's formula).

(a)
$$2 + i$$

Solution:

$$z = 2 + i$$

$$\left|z\right| = \sqrt{2^2 + 1^2}$$

$$=\sqrt{5}$$

$$q = \tan^{-1}\left(\frac{1}{2}\right) = 0.464$$

$$z = re^{qi}$$

$$=\sqrt{5}e^{0.464i}$$

(b)
$$-4-4i$$

Solution: Let

$$z = -4 - 4i$$

$$|z| = \sqrt{(-4)^2 + (-4)^2}$$

$$=\sqrt{16+16}$$

$$=\sqrt{32}$$

$$=4\sqrt{2}$$

$$q = tan^{-1} \left(\frac{-4}{-4} \right)$$

$$=-\frac{3p}{4}$$

$$z = re^{iq}$$

$$=4\sqrt{2}e^{-\frac{3p}{4}i}$$