CHAPTER 5
 APPLICATIONS OF INTEGRATION

5.1 Geometrical Interpretation-Definite Integral (page 362)

5.2 Area of a Region (page 369)

5.2.1 Area of a Region Under a Graph (page 369)

Figure 5.7 shows the region bounded by the curve $y=f(x)$, the x-axis, and the lines $x=a$ and $x=b$. This region is located above the x-axis. The area of this region is given by

$$
\int_{a}^{b} f(x) d x
$$

Figure 5.8 shows the region bounded by the curve $y=g(x)$, the x-axis, and the lines $x=a$ and $x=b$. This region is located below the x-axis. The definite integral $\int_{a}^{b} f(x) d x$ has a negative value. Since the area is always a positive quantity, the area of this region is written as

$$
\left|\int_{a}^{b} g(x) d x\right|
$$

Figure 5.9 shows the region bounded by the curve $x=u(y)$, the y-axis, and the lines $y=c$ and $y=d$. This region is located on the right hand side of the y-axis. The area of this region is given by

$$
\int_{c}^{d} u(y) d y
$$

Example 5.3 (page 370):

Find the area of the region bounded by the curve $y=2-x^{2}$, the x-axis and the lines $x=0$ and $x=1$.

Example 5.4 (page 371):

Find the area bounded by the lines $y=2-x, x=3, x=4$ and x-axis.

Example 5.8 (page 374):

Find the area of the region in the first quadrant bounded by the curve $y=\frac{2}{x}, y$-axis with lines $y=2$ and $y=4$.

5.2.2 Area of the Region between Two Curves (page 374)

(page 375)

Given two curves $y=f(x)$ and $y=g(x)$, let $g(x) \leq f(x)$ for [a, b], the area of the region that lies between these two curves in the interval [a, b] (which is located above the x axis) is

$$
\int_{a}^{b} f(x) d x-\int_{a}^{b} g(x) d x=\int_{a}^{b}[f(x)-g(x)] d x
$$

The above formula is also valid for the graph that is located below the x-axis.

Definition 5.2 (Area Between Two Curves) (page 376)

If $f(x)$ and $g(x)$ are continuous in the interval $[\mathrm{a}, \mathrm{b}]$ and $g(x) \leq f(x)$ for all x in $[\mathrm{a}, \mathrm{b}]$, then the area of the region
bounded by the curves $y=f(x)$ and $y=g(x)$ between the lines $x=a$ and $x=b$ is given by

$$
A=\int_{a}^{b}\{f(x)-g(x)\} d x
$$

Example 5.10 (page 376):
Find the area of the region bounded by the curve $y=x^{2}+2$ and the lines $y=-x, x=0$ and $x=1$.

Example 5.15 (page 380):
Find the area of the region bounded by the curves $y^{2}=3-x$ and the line $y=x-1$.

Definition 5.3 (Area Between Two Curves about y-Axis) (page 383)

If $u(y)$ and $v(y)$ are continuous in the interval $[\mathrm{c}, \mathrm{d}]$ and $v(y) \leq u(y)$ for all y in [$\mathrm{c}, \mathrm{d}]$, then the area of the region bounded by the curves $x=u(y)$ and $x=v(y)$ between the lines $y=c$ and $y=d$ is given by

$$
A=\int_{c}^{d}\{u(y)-v(y)\} d y .
$$

Example 5.17 (page 383):

Find the area of the region bounded by the curves $y^{2}=3-x$ and a line $y=x-1$.

5.3 Volume of Revolution (page 387)

If a plane region is revolves about a line then a solid object is generated which is called the solid of revolution, and the line is called the axis of revolution.

Definition 5.4 (Volume of Revolution about x-Axis)

 (page 388)Let $f(x)$ be a non-negative and continuous function in the interval [a, b]. If the region between this curve, the x-axis and the lines $x=a$ and $x=b$ revolves 360° about the x-axis, then the volume of the solid generated is

$$
V=\pi \int_{a}^{b}[f(x)]^{2} d x
$$

Example 5.20 (page 388):

Find the volume of the solid of revolution when the region bounded by the parabola $y=2 \sqrt{x}$ and x-axis within the interval $[0,4]$ revolves 360° about the x-axis.

Definition 5.5 (Volume of Revolution about y-Axis) (page 390)

Let $u(y)$ be a non-negative and continuous function in the interval [c, d]. If the region bounded by $x=u(y)$, the y -axis and the lines $y=c$ and $y=d$ revolves 360° about the y-axis, the volume of the solid generated is

$$
V=\pi \int_{c}^{d}[u(y)]^{2} d y .
$$

Example 5.23 (page 390):
Find the volume of the solid of revolution when the region bounded by the curve $y=x^{2}+1$, the lines $y=1, y=2$ and the y-axis revolves 360° about the y-axis.

Definition 5.6 (Volume of Revolution about x-Axis between two Curves) (page 391)

Let $f(x)$ and $g(x)$ be non-negative and continuous functions in the interval $[\mathrm{a}, \mathrm{b}]$ and $g(x) \leq f(x)$ for all x in the interval $[\mathrm{a}$,
b]. The volume of revolution when the region bounded by $y=f(x), g(x), x=a$ and $x=b$, revolves 360° about the x axis is

$$
V=\pi \int_{a}^{b}\left\{[f(x)]^{2}-[g(x)]^{2}\right\} d x .
$$

Example 5.24 (page 391):
Find the volume of the solid of revolution when the region bounded by the curve $y^{2}=8 x$ and $y=x^{2}$ revolves at 360° about the x-axis.

Definition 5.7 (Volume of Revolution about y-Axis

 Between Two Curves) (page 392)Let $u(y)$ and $v(y)$ be a non-negative and continuous function in the interval $[c, d]$ and $v(y) \leq u(y)$ for all y in the interval [c , d]. The volume of the solid generated when the region bounded by the curves $x=u(y), x=v(y), y=c$ and $y=d$ revolves 360° about the y-axis is

$$
V=\pi \int_{c}^{d}\left\{[u(y)]^{2}-[v(y)]^{2}\right\} d y .
$$

Example 5.25 (page 392):

Find the volume of the solid of revolution when the region bounded by the curve $y^{2}=8 x$ and $y=x^{2}$ revolves at 360° about the x-axis.

Exercise at home: (Tutorial 10)

(Page 385) Quiz 5B: no. 1, 3, 4, 7.
(Page 394) Quiz 5C: no. 1(a), 1(c), 2(b), 2(e).
(Page 395) Exercise 5: no. 23, 33, 43.

