9.1 The power method

The power method is an iterative approach that can be employed to determine the largest eigen value and corresponding eigen vector.

If matrix **A** has n eigen vectors { \mathbf{v}_1 , \mathbf{v}_2 , ..., \mathbf{v}_n } which are linear independent, hence any nonzero vector $\mathbf{v}^{(0)}$ can be represented as

$$\mathbf{V}^{(0)} = c_1 \mathbf{V}_1 + c_2 \mathbf{V}_2 + \dots + c_n \mathbf{V}_n$$
$$= \sum_{i=1}^n c_i \mathbf{V}_i$$

where c_i is a constant, i = 1, 2, ..., n

So,

$$\mathbf{A}\mathbf{V}^{(0)} = \mathbf{A}\left(\sum_{i}^{n} c_{i} \mathbf{v}_{i}\right) = \sum_{i}^{n} c_{i} \lambda_{i} \mathbf{v}_{i}$$

$$\mathbf{v}^{(1)} = \frac{1}{m_1} \mathbf{A} \mathbf{v}^{(0)} = \frac{1}{m} \sum_{i}^{n} c_i \lambda_i \mathbf{v}_i$$

where m_1 is an entry of $\mathbf{Av}^{(0)}$ which has the highest absolute value.

In general, the iteration formula of power method can be written as

$$\mathbf{V}^{(k+1)} = \frac{1}{m_{k+1}} \mathbf{A} \mathbf{V}^{(k)}, k = 0, 1, 2,...$$

where m_{k+1} is an entry of $\mathbf{Av}^{(k)}$ which has the highest absolute value.

When
$$\|\mathbf{V}^{(k)} - \mathbf{V}^{(k-1)}\|_{\infty} = \max_{1 \le i \le n} |\mathbf{V}_i^{(k)} - \mathbf{V}_i^{(k-1)}| < \varepsilon$$

The computation is terminated for a prespecified stopping criterion ε . The result is converging on a **highest eigen value** $\lambda \approx m_{k+1}$ with a corresponding **eigen vector** $\mathbf{v} \approx \mathbf{v}^{(k)}$.

Example:

Employ the power method to determine the highest eigen value and corresponding eigen vector for

$$\mathbf{A} = \begin{pmatrix} 2 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 2 \end{pmatrix}$$

accurate to within ε = 0.005.

Assume
$$\mathbf{v}^{(0)} = (1,1,1)^{\mathsf{T}}$$

So
$$\mathbf{Av}^{(0)} = \begin{pmatrix} 2 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 2 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}; \qquad m_1 = 2$$

$$\mathbf{v}^{(1)} = \frac{1}{m_1} \left(\mathbf{A} \mathbf{v}^{(0)} \right) = \frac{1}{1} \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}$$

$$\left\|\mathbf{v}^1 - \mathbf{v}^0\right\|_{\infty} = 1$$

$$\mathbf{Av}^{(1)} = \begin{pmatrix} 2 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 2 \end{pmatrix} \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix} = \begin{pmatrix} 2 \\ -2 \\ 2 \end{pmatrix}; \quad m_2 = 2$$

$$\mathbf{v}^{(2)} = \frac{1}{m_2} \left(\mathbf{A} \mathbf{v}^{(1)} \right) = \frac{1}{2} \begin{pmatrix} 2 \\ -2 \\ 2 \end{pmatrix} = \begin{pmatrix} 1 \\ -1 \\ 1 \end{pmatrix}$$

$$\left\|\mathbf{v}^2 - \mathbf{v}^1\right\|_{\infty} = 1$$

$$\mathbf{Av}^{(2)} = \begin{pmatrix} 2 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 2 \end{pmatrix} \begin{pmatrix} 1 \\ -1 \\ 1 \end{pmatrix} = \begin{pmatrix} 3 \\ -4 \\ 3 \end{pmatrix}; \qquad m_3 = -4$$

$$\mathbf{v}^{(3)} = \frac{1}{m_3} \left(\mathbf{A} \mathbf{v}^{(2)} \right) = \frac{1}{-4} \begin{pmatrix} 3 \\ -4 \\ 3 \end{pmatrix} = \begin{pmatrix} -0.75 \\ 1 \\ -0.75 \end{pmatrix}$$

$$\left\|\mathbf{v}^3 - \mathbf{v}^2\right\|_{\infty} = 2$$

$$\mathbf{Av}^{(3)} = \begin{pmatrix} 2 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 2 \end{pmatrix} \begin{pmatrix} -0.75 \\ 1 \\ -0.75 \end{pmatrix} = \begin{pmatrix} -2.5 \\ 3.5 \\ -2.5 \end{pmatrix}; \quad m_4 = 3.5$$

$$\mathbf{v}^{(4)} = \frac{1}{m_4} \left(\mathbf{A} \mathbf{v}^{(3)} \right) = \frac{1}{3.5} \begin{pmatrix} -2.5 \\ 3.5 \\ -2.5 \end{pmatrix} = \begin{pmatrix} -0.714 \\ 1 \\ -0.714 \end{pmatrix}$$

$$\|\mathbf{v}^4 - \mathbf{v}^3\|_{\infty} = 0.036$$

$$\mathbf{Av}^{(4)} = \begin{pmatrix} 2 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 2 \end{pmatrix} \begin{pmatrix} -0.714 \\ 1 \\ -0.714 \end{pmatrix} = \begin{pmatrix} -2.428 \\ 3.428 \\ -2.428 \end{pmatrix}; \qquad m_5 = 3.428$$

$$\mathbf{v}^{(5)} = \frac{1}{m_5} \left(\mathbf{A} \mathbf{v}^{(4)} \right) = \frac{1}{3.428} \begin{pmatrix} -2.428 \\ 3.428 \\ -2.428 \end{pmatrix} = \begin{pmatrix} -0.708 \\ 1 \\ -0.708 \end{pmatrix}$$

$$\left\|\mathbf{v}^5 - \mathbf{v}^4\right\|_{\infty} = 0.006$$

$$\mathbf{Av}^{(5)} = \begin{pmatrix} 2 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 2 \end{pmatrix} \begin{pmatrix} -0.708 \\ 1 \\ -0.708 \end{pmatrix} = \begin{pmatrix} -2.416 \\ 3.416 \\ -2.416 \end{pmatrix}; \qquad m_6 = 3.416$$

$$\mathbf{v}^{(6)} = \frac{1}{m_6} \left(\mathbf{A} \mathbf{v}^{(5)} \right) = \frac{1}{3.416} \begin{pmatrix} -2.416 \\ 3.416 \\ -2.416 \end{pmatrix} = \begin{pmatrix} -0.707 \\ 1 \\ -0.707 \end{pmatrix}$$

$$\|\mathbf{v}^6 - \mathbf{v}^5\|_{\infty} = 0.001$$

$$\mathbf{Av}^{(6)} = \begin{pmatrix} 2 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 2 \end{pmatrix} \begin{pmatrix} -0.707 \\ 1 \\ -0.707 \end{pmatrix} = \begin{pmatrix} -2.414 \\ 3.414 \\ -2.414 \end{pmatrix}; \qquad m_7 = 3.414$$

$$Eigen value, \lambda = m_7 = 3.414$$

Eigen vector,
$$\mathbf{v} = \mathbf{v}^{(6)} = \begin{pmatrix} -0.707 \\ 1 \\ -0.707 \end{pmatrix}$$