9.1 The Power Method ... et

The power method is an iterative approach that can be employed to determine the
largest eigen value and corresponding eigen vector.

If matrix A has n eigen vectors { vq, v», ... ,v,} which are linear independent, hence any
nonzero vector v¥ can be represented as
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where ¢;is a constant, i= 1,2, ... n

So,
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where my is an entry of Av® which has the highest absolute value.



In general, the iteration formula of power method can be written as
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where M. is an entry of Av which has the highest absolute value.

When [V — v = maxly,® —y, b
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The computation is terminated for a prespecified stopping criterion & . The result is
converging on a highest eigen value 1 ~ m,., with a corresponding eigen vector vav?,



Employ the power method to determine the highest eigen value and
corresponding eigen vector for

2 -1 0
A=1-1 2 -1
0 -1 2

accurate to within &= 0.005.

Assume v = (1,1,1)7



So
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v - v3”m =0.036
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; m ;= 3.414

Eigen value, A =m; = 3.414
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