CHAPTER EIGHT

ESTIMATION AND HYPOTHESIS TESTING FOR TWO POPULATIONS

8.0 Introduction

A discussion on the inferences about the difference between two population means for large and small independent samples for equal and unequal standard deviations. Beside that, the inference about the difference between two population proportions for large and independent samples will be discussed in detail.

8.1 Hypothesis

Definition

Null hypothesis is a hypothesis which is tested for possible rejection under the assumption that it is true and is denoted by H_{0}
Alternative hypothesis is a complimentary hypothesis to null hypothesis and is denoted by H_{1}

8.2 Procedures of conducting the tests of hypotheses

Step 1 Formulate $H_{0}: \theta_{1} \leq \theta_{2}, \theta_{1} \geq \theta_{2}, \theta_{1}=\theta_{2}$
Step 2 Formulate $H_{1}: \theta_{1}>\theta_{2}, \theta_{1}<\theta_{2}, \theta_{1} \neq \theta_{2}$
Step 3 Specify α
Step 4 Determine a critical region of size α. (If the conclusion is to be based on a P-value, it is not necessary to state the critical region)

Step 5 Compute the value of the test statistic from the sample data
Step 6 Conclusions : Reject H_{0} if the statistic has a value in the critical region (or if the computed P-value is less than or equal to the desired significance level α); otherwise, do not reject H_{0}.

8.3 Two sample: Test concerning Difference Between Two Means

Case 1: " σ_{1}^{2} and σ_{2}^{2} are known" or

$$
\text { " } \sigma_{1}^{2} \text { and } \sigma_{2}^{2} \text { are unknown but } n_{1}, n_{2} \geq 30 "
$$

Two independent samples of size n_{1} and n_{2} taken from population with mean μ_{1}, μ_{2} and variance σ_{1}^{2} and σ_{2}^{2}. To test whether is these samples are taken from population whose means are equal,

For two-tailed hypothesis,
(i) $\quad H_{0}: \mu_{1}=\mu_{2} \quad / \quad H_{0}: \mu_{1}-\mu_{2}=0$
(ii) $H_{1}: \mu_{1} \neq \mu_{2}$
(iii) $\alpha=0.05$
(iv) Critical region : Reject H_{0} if $Z>Z_{\alpha / 2}$ or $Z<-Z_{\alpha / 2}$
(v) Test statistic $\quad Z=\frac{\left(\overline{x_{1}}-\overline{x_{2}}\right)-\left(\mu_{1}-\mu_{2}\right)}{\sqrt{\frac{\sigma_{1}^{2}}{n_{1}}+\frac{\sigma_{2}^{2}}{n_{2}}}}$

- Note : Replace σ_{1} and σ_{2} with s_{1} and s_{2} if σ_{1} and σ_{2} are unknown

Case 2: " σ_{1}^{2} and σ_{2}^{2} are unknown, $n_{1}, n_{2} \leq 30$ "
Two independent samples of size n_{1} and n_{2} taken from approximate normal population with mean μ_{1}, μ_{2} and unknown variances. To test whether is these samples are taken from population whose means are equal,

Case 2.1: $\sigma_{1}^{2}=\sigma_{2}^{2}($ Equal variance)

For two-tailed hypothesis,
(i) $H_{0}: \mu_{1}=\mu_{2}$
(ii) $H_{1}: \mu_{1} \neq \mu_{2}$
(iii) $\alpha=0.05$
(iv) Critical region : Reject H_{0} if $T>t_{\alpha / 2, n_{1}+n_{2}-2}$ or $T<-t_{\alpha / 2, n_{1}+n_{2}-2}$
(v) Test statistic $\quad T=\frac{\left(\overline{x_{1}}-\overline{x_{2}}\right)-\left(\mu_{1}-\mu_{2}\right)}{S_{p} \sqrt{\frac{1}{n_{1}}+\frac{1}{n_{2}}}}$
where

$$
\text { pooled variance, } S_{p}^{2}=\frac{\left(n_{1}-1\right) s_{1}^{2}+\left(n_{2}-1\right) s_{2}^{2}}{n_{1}+n_{2}-2}
$$

Case 2.2: $\sigma_{1}^{2} \neq \sigma_{2}^{2}$ (Unequal variance)
For two-tailed hypothesis,
(iv) $H_{0}: \mu_{1}=\mu_{2}$
(v) $H_{1}: \mu_{1} \neq \mu_{2}$
(vi) $\alpha=0.05$
(iv) Critical region : Reject H_{0} if $T>t_{\alpha / 2, v}$ or $T<-t_{\alpha / 2}$,v
(v) Test statistic $\quad T=\frac{\left(\overline{x_{1}}-\overline{x_{2}}\right)-\left(\mu_{1}-\mu_{2}\right)}{\sqrt{\frac{s_{1}^{2}}{n_{1}}+\frac{s_{2}^{2}}{n_{2}}}}$
where

$$
w_{1}=\frac{s_{1}^{2}}{n_{1}}, \quad w_{2}=\frac{s_{2}^{2}}{n_{2}}, \quad v=\frac{\left(w_{1}+w_{2}\right)^{2}}{\frac{w_{1}^{2}}{n_{1}-1}+\frac{w_{2}^{2}}{n_{2}-1}}
$$

8.4 Two Samples : Test on Two proportions

If \hat{p}_{1} and \hat{p}_{2} are the proportion of successes in a random sample of size n_{1} and n_{2}, to test whether the two population proportions are equal,
For two-tailed hypothesis,
(i) $H_{0}: p_{1}=p_{2}$
(ii) $\quad H_{1}: p_{1} \neq p_{2}$
(iii) $\alpha=0.05$
(iv) Critical region : Reject H_{0} if $Z>Z_{\alpha / 2}$ or $Z<-Z_{\alpha / 2}$
(v) Test statistic

$$
Z=\frac{\left(\hat{p}_{1}-\hat{p}_{2}\right)-\left(p_{1}-p_{2}\right)}{\sqrt{\hat{p}_{\text {pool }} \hat{q}_{\text {pool }}\left(\frac{1}{n_{1}}+\frac{1}{n_{2}}\right)}}
$$

where

$$
\hat{p}_{\text {pool }}=\frac{n_{1} \hat{p}_{1}+n_{2} \hat{p}_{2}}{n_{1}+n_{2}}
$$

