CHAPTER EIGHT

ESTIMATION AND HYPOTHESIS TESTING FOR TWO POPULATIONS

8.0 Introduction

A discussion on the inferences about the difference between two population means for large and small independent samples for equal and unequal standard deviations. Beside that, the inference about the difference between two population proportions for large and independent samples will be discussed in detail.

8.1 Hypothesis

Definition

Null hypothesis is a hypothesis which is tested for possible rejection under the assumption that it is true and is denoted by H_0

Alternative hypothesis is a complementary hypothesis to null hypothesis and is denoted by H_1

8.2 Procedures of conducting the tests of hypotheses

Step 1 Formulate $H_0: \ \theta_1 \leq \theta_2$, $\theta_1 \geq \theta_2$, $\theta_1 = \theta_2$

Step 2 Formulate $H_1: \theta_1 > \theta_2$, $\theta_1 < \theta_2$, $\theta_1 \neq \theta_2$

Step 3 Specify α

- Step 4 Determine a critical region of size α . (If the conclusion is to be based on a *P*-value, it is not necessary to state the critical region)
- Step 5 Compute the value of the test statistic from the sample data
- Step 6 Conclusions : Reject H_0 if the statistic has a value in the critical region (or if the computed *P*-value is less than or equal to the desired significance level α); otherwise, do not reject H_0 .

8.3 Two sample: Test concerning Difference Between Two Means

Case 1 : " σ_1^2 and σ_2^2 are known" or

"
$$\sigma_1^2$$
 and σ_2^2 are unknown but $n_1, n_2 \ge 30$ "

Two independent samples of size n_1 and n_2 taken from population with mean μ_1 , μ_2 and variance σ_1^2 and σ_2^2 . To test whether is these samples are taken from population whose means are equal,

For two-tailed hypothesis,

- (i) $H_0: \mu_1 = \mu_2$ / $H_0: \mu_1 \mu_2 = 0$
- (ii) $H_1: \mu_1 \neq \mu_2$
- (iii) $\alpha = 0.05$
- (iv) Critical region : Reject H_0 if $Z > Z_{\alpha/2}$ or $Z < -Z_{\alpha/2}$

(v) Test statistic
$$Z = \frac{(\overline{x_1} - \overline{x_2}) - (\mu_1 - \mu_2)}{\sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}}$$

• Note : Replace σ_1 and σ_2 with s_1 and s_2 if σ_1 and σ_2 are unknown

Case 2 : " σ_1^2 and σ_2^2 are unknown, n_1 , $n_2 \le 30$ "

Two independent samples of size n_1 and n_2 taken from approximate normal population with mean μ_1 , μ_2 and unknown variances. To test whether is these samples are taken from population whose means are equal,

Case 2.1 : $\sigma_1^2 = \sigma_2^2$ (Equal variance)

For two-tailed hypothesis,

- (i) $H_0: \mu_1 = \mu_2$
- (ii) $H_1: \mu_1 \neq \mu_2$
- (iii) $\alpha = 0.05$

(iv) Critical region : Reject
$$H_0$$
 if $T > t_{\alpha_2, n_1+n_2-2}$ or $T < -t_{\alpha_2, n_1+n_2-2}$

(v) Test statistic
$$T = \frac{(x_1 - x_2) - (\mu_1 - \mu_2)}{S_p \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}}$$

where

pooled variance,
$$S_p^2 = \frac{(n_1 - 1)s_1^2 + (n_2 - 1)s_2^2}{n_1 + n_2 - 2}$$

Case 2.2 : $\sigma_1^2 \neq \sigma_2^2$ (Unequal variance)

For two-tailed hypothesis,

- (iv) $H_0: \mu_1 = \mu_2$
- (v) $H_1: \mu_1 \neq \mu_2$
- (vi) $\alpha = 0.05$

(iv) Critical region : Reject
$$H_0$$
 if $T > t_{\alpha/2, \nu}$ or $T < -t_{\alpha/2, \nu}$

(v) Test statistic
$$T = \frac{(\overline{x_1} - \overline{x_2}) - (\mu_1 - \mu_2)}{\sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}}$$

where

$$w_1 = \frac{s_1^2}{n_1}, \qquad w_2 = \frac{s_2^2}{n_2}, \qquad v = \frac{(w_1 + w_2)^2}{\frac{w_1^2}{n_1 - 1} + \frac{w_2^2}{n_2 - 1}}$$

8.4 Two Samples : Test on Two proportions

If \hat{p}_1 and \hat{p}_2 are the proportion of successes in a random sample of size n_1 and n_2 , to test whether the two population proportions are equal,

For two-tailed hypothesis,

- (i) $H_0: p_1 = p_2$
- (ii) $H_1: p_1 \neq p_2$
- (iii) $\alpha = 0.05$
- (iv) Critical region : Reject H_0 if $Z > Z_{\alpha/2}$ or $Z < -Z_{\alpha/2}$

$$Z = \frac{(\hat{p}_1 - \hat{p}_2) - (p_1 - p_2)}{\sqrt{\hat{p}_{pool}\hat{q}_{pool}\left(\frac{1}{n_1} + \frac{1}{n_2}\right)}}$$

where

$$\hat{p}_{pool} = \frac{n_1 \hat{p}_1 + n_2 \hat{p}_2}{n_1 + n_2}$$