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Why we need learn numerical analysis?

Most of the problems in Engineering, Fhysical and Economical
science can be formulated in terms of systems of linear or

non-linear equations.
Majority of the problems, the solutions in analytical form are

non-existent or difficult or not amenable for direct interpretation.
In all such problems, Numerical Analysis provides approximate
solutions, practical and amenable for analysis.

MNA does not strive for exactness. Instead, it yields approximation

with specified degree of accuracy.
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Introduction

Why we need learn numerical analysis?

Most of the problems in Engineering, Fhysical and Economical
science can be formulated in terms of systems of linear or
non-linear equations.

Majority of the problems, the solutions in analytical form are
non-existent or difficult or not amenable for direct interpretation.
In all such problems, Numerical Analysis provides approximate
solutions, practical and amenable for analysis.

MNA does not strive for exactness. Instead, it yields approximation
with specified degree of accuracy.

Mow, by using high-speed computer resulting the high accuracy,
reliable and fast.

MA is an 'art’ because the choice of appropriate procedure which
'best’ suits to a given problem yields 'good” solutions.
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Introduction

Type Approach in Mathematics
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Type Approach in Mathematics

Figure: (a) Numerical approach
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Introduction

The central idea behind the majority of methods discussed in this
session is the Taylor Series expansion.
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Introduction

The central idea behind the majority of methods discussed in this
session is the Taylor Series expansion.
(a) For a single variable function

-:'f-l':-s.’j
3l

fx+ dx) = f(x) + 8xf'(x) + ?i‘”{x] + ' (x)+--- (1)
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Introduction

The central idea behind the majority of methods discussed in this
session is the Taylor Series expansion.
(a) For a single variable function

aX
2

f(x+ 8x) = f(x)+ 6xf'(x)+ 2f”(x)-{-g—f"'(x)-l—--- (1)

(b) In two variables function

Jx"’ ?'_’f
f(x+ 6x,y + 8y) = f(x, y) + oxf, + dyf, + T(t)xi’
5V“ 52f sz
A= dxd 2
2¢y°+ y0><cy+ (2)
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Introduction

The central idea behind the majority of methods discussed in this
session is the Taylor Series expansion.
(a) For a single variable function

aX

zzf”(x)+Lf”’(x)+--- (1)

f(x+ 8x) = f(x)+ 6xf'(x)+

(b) In two variables function

Jx"’ ?'_’f
f(x+ 6x,y + 8y) = f(x, y) + oxf, + dyf, + T(t)xi’
5V“ 52f sz
A= dxd 2
2 «y°+ y0x0y+ (2)

Similar expansions may be constructed for functions with more
independent variables.
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This is the robust method. We need two two initial guesses points
a and b which bracket the root.

The solution x = x; to equations of the form f{x) =0 are often
required where it is impossible or infeasible to find an analytical
expression for the vector x.
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Root finding in one dimension

1. Bisection Method

This is the robust method. We need two two initial guesses points
a and b which bracket the root.

The solution x = x; to equations of the form f(x) = 0 are often
required where it is impossible or infeasible to find an analytical
expression for the vector x.

Consider the equation

flx)=0 (3)

in [x,, %) and assume f, = f(x,) and f, = f(x,) such that f,f, < 0.
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Root finding in one dimension

1. Bisection Method

This is the robust method. We need two two initial guesses points
a and b which bracket the root.

The solution x = x; to equations of the form f(x) = 0 are often
required where it is impossible or infeasible to find an analytical
expression for the vector x.

Consider the equation
f(x)=0 (3)

in [x,, %) and assume f, = f(x,) and f, = f(x,) such that f,f, < 0.
Clearly, if f,f, = 0 then one or both of x; and x;, must be a root of
f(x)=0.
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Root finding in one dimension

The procedure of Bisection method described in Figure below.

Figure: Bisection method
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Bisection Method

The basic algorithm for the bisection method relies on repeated
application of
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The basic algorithm for the bisection method relies on repeated
application of

@ The midpoint, x. = %

@ If f. = f(c) =0 then x = x. is an exact solution
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Bisection Method

The basic algorithm for the bisection method relies on repeated
application of

© The midpoint, x. = Xa-:i;xo
@ If fc = f(c) =0 then x = x. is an exact solution

© else if f,f. < 0 then the root lies in the interval (x,, xc)
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Bisection Method

The basic algorithm for the bisection method relies on repeated
application of

© The midpoint, x. = #
@ If f. = f(c) =0 then x = x. is an exact solution
© else if f,f. < 0 then the root lies in the interval (x,, x.)

© else the root lies in the interval (xc, xp)
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Bisection Method

The basic algorithm for the bisection method relies on repeated
application of

— XatXp

© The midpoint, x. = =3

@ If f. = f(c) =0 then x = x. is an exact solution

© else if f,f. < 0 then the root lies in the interval (x,, x.)
© else the root lies in the interval (xc, xp)

By replacing the interval (x,, xp) with either (x;, xc) or (xc, xs)
(whichever brackets the root), the error in our estimate of the
solution to f(x) = 0 is, on average, halved. We repeat this interval
halving until either the exact root has been found or the interval is
smaller than some specified tolerance, > 0.
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Bisection Method

1.1. Convergence

This method based on the intermediate theorem.
Since the interval (x,, x5 ) is halved for each iteration, then

e
r,,av?“. (4)

More generally, if x, is the estimate for the root x* at the nth
iteration, then the error in this estimate is

En = Xpx'. (5)

In many cases we may express the error at the (n 4 1)th time step
in terms of the error at the nth time step as

lent1| ~ Clen|”. (6)
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Bisection Method

The exponent P in equation (6) gives the order of the
convergence. [he larger the value of P, the faster the scheme
converges on the solution, at least provided n+ 1 < n. For first
order schemes (i.e. p=1), |C| < 1 for convergence.
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convergence. [he larger the value of P, the faster the scheme
converges on the solution, at least provided n+ 1 < n. For first
order schemes (i.e. p=1), |C| < 1 for convergence.

When using computer to generate approximations, it is a good
practice to set an upper bound on the number of iterations. The
best stopping criterion is
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Bisection Method

The exponent P in equation (6) gives the order of the
convergence. [he larger the value of P, the faster the scheme
converges on the solution, at least provided n+ 1 < n. For first
order schemes (i.e. p=1), |C| < 1 for convergence.

When using computer to generate approximations, it is a good
practice to set an upper bound on the number of iterations. The
best stopping criterion is

|x|".l - :"‘frr—ll < |:_|"r}

because it comes closest to testing relative error.
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Bisection Method

2.2 Bisection Algorithm

To find a solution f{x) given continuous function f on the interval
[3, b], where f(a) and f(b) have opposite signs.

INPUT: Endpoints a, b; tolerance TOL; maximum number of
iterations M.
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Bisection Method

2.2 Bisection Algorithm

To find a solution f(x) given continuous function f on the interval
[3, b], where f(a) and f(b) have opposite signs.

INPUT: Endpoints a, b; tolerance TOL; maximum number of
iterations Np.

QOUTPUT: approximate solution x* or message of failure.

Step 1 Seti=1. FA=f(a)
Step 2 While i < Ny do Step 2.1 - 2.4
Step 2.1 Set x = a+ 252; FX = f(x)
(Compute x;)
Step 2.2 If FX =0 or 222 < TOL then

OUTPUT (x);-(The procedure was
successful.)

STOP
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Bisection Method

Step 24 If FAx FX > 0. then seta = x; FA =
FX else set b = x. (Compute a;, b;)
Step 3 OUTPUT ('The method failed after N iterations,
No =, No); (The procedure was unsuccessful.)

STOP.
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Mewton-Raphson's Method

2. Newton-Raphson's Method

Consider the Taylor Series expansion of f{x) about some point
X =Xp.
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Mewton-Raphson's Method

2. Newton-Raphson's Method

Consider the Taylor Series expansion of f{x) about some point
X =Xp.

f(x) = fli-xh}+Eﬁf—f-:uJf’im}Jr%Ex—xn]Ef”(quJrE’Elx—ﬁzlj}- (8)
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Newton-Raphson's Method

2. Newton-Raphson’s Method
Consider the Taylor Series expansion of f(x) about some point
X=2Xp.
1 -
F(x) = fx0)+(x—%0)f (x0)+ 5 (x—%0)*F"(x)+O(|Jx— ). (8)

Setting the quadratic and higher terms to zero and solving the
linear approximation of f(x) = 0 for x gives

Reseasch Methodobgy Took: 1. Numerncal Methods



Newton-Raphson's Method

2. Newton-Raphson’s Method
Consider the Taylor Series expansion of f(x) about some point
X=2Xp.
1 -
F(x) = Flo )+ (x=20) (o) + 30x—% P F"(30)+ O —%l*). (8)

Setting the quadratic and higher terms to zero and solving the
linear approximation of f(x) = 0 for x gives

f(xo)

x1=>@—m. (9)

Subsequent iterations are defined in a similar manner as

Xn41 = Xp — % (10)
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Newton-Raphson's Method

Geometrically, x,41 can be interpreted as the value of x at which a
line, passing through the point (x,, f(x,)) and tangent to the
curve f(x) at that point, crosses the y axis. Figure 1 provides a
graphical interpretation of this.

v A

Figure: 1: lterations Newton's method
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Mewton-Raphson's Method

We use the Newton's method to determine v'5.
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Mewton-Raphson's Method

We use the Newton's method to determine v'5.

Solution:

We start with f(x) = x* — A, observe that the roots of the
equation x> — A = 0 are £ A. Next use f(x) and its derivative,
f!(x) = 2x and also xp = 2. After simplification, we have

A
XH-I_E

Xndl = >
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Newton-Raphson's Method

Now, we use equation (10) to solve the problem and we obtain:

2+ 2
X = —==225
2.25 + 3=
X = #_2_236111111
2.236111111 4 =2
X3 = 2+ 2 =2.236067978
2.236067978 + s
Xg = ;’ TOETITE = 2.236067978
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Newton-Raphson's Method

Now, we use equation (10) to solve the problem and we obtain:

X1

242
2

2.25 4+ =2

% —= 2236111111

2936111111 + ppaerini

2

5
2'236067978; 2236067978 = 2.236067978

=225

= 2.236067978

If we continue for n > 4, we will obtain x; = 2.236067978. Hence,
we conclude that convergence accurate to nine significant digits
has been obtained.
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Mewton-Raphson's Method

2.1 Convergence
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Newton-Raphson's Method

2.1 Convergence

Suppose that {x,}5° converges to x*, and set e,1 = xp41 — x* for
n > 2. By using Taylor's series expansion around x* we have

1 . f"(x*
entl = ‘2‘95?,—((;‘)24‘ O(e;)
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Newton-Raphson's Method

2.1 Convergence

Suppose that {x,}5> converges to x*, and set e,41 = xp41 — x* for
n > 2. By using Taylor's series expansion around x* we have

g ; ’;"(( ))+0(eg)

since f(x*) = 0. Thus, by comparison with (4), there is second
order (quadratic) convergence. The presence of the f' term in the
denominator shows that the scheme will not converge if f' vanishes
in the neighborhood of the root.
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Mewton-Raphson's Method

2.2 Newton's Algorithm

Reseasch Methodolbgy Took: 1. Numerncal Methods



Newton-Raphson's Method

2.2 Newton's Algorithm

INPUT: Initial approximation xp; tolerance TOL; maximum
number of iterations M.

OUTPUT: approximate solution x* or message of failure.
Step 1 Setj=1.

Step 2 While i < Np do Step 2.1 - 2.4,
Step 2.1 Set x = x5 — :,X:o . (Compute x;)

Step 2.2 If |[x — xp| < TOL then
OUTPUT (x); (The procedure was
successful.)

STOP
Step 2.3 Seti=i+1.
Step 2.4 Set x; = x. (Update x)
Step 3 UOTPUT ('The method failed after N iterations,
No =, No); (The procedure was unsuccessful.)

STOP.
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Mewton-Raphson's Method

2.3 Stopping Criterion
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Newton-Raphson's Method

2.3 Stopping Criterion

The stopping-technique inequalities given with the Bisection
method are applicable to Newton's method. That is, select a
tolerance « > 0, and construct X3, X5, -+ , X,,, untill

|Xn — Xn—1| < &, (11)
Xy — X ,
bozxonl 20, (12)
or
If(xn)] < e (13)
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ODE's: Euler's Method

Ordinary Differential Equations
1. Euler's Method
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ODE's: Euler's Method

Ordinary Differential Equations
1. Euler's Method

The basic idea of differential calculus at the any point is that a
function value and its tangent line do not differ very much.
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ODE's: Euler's Method

Ordinary Differential Equations
1. Euler's Method

The basic idea of differential calculus at the any point is that a
function value and its tangent line do not differ very much.
Consider, for example, the function f(x) = cosx and its tangent
line at 5. Figure 2 provides a graphical interpretation of this

15
\

Figure: 2: Tangent line
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Euler's Method

Mow, consider the differential equation

dy
E—x—}‘ (14)
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Euler's Method

Mow, consider the differential equation

dy
E—x—}‘ (14)

If we want to compute the solution passing through the point
(—1,4), then we can compute the tangent line at this point.
It's slope at x = —1 is given by the differential equation

y’[—1}=—1—4=_5- {15}
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Euler's Method

Now, consider the differential equation

dy
Y o xmy (19)

If we want to compute the solution passing through the point
(—1,4), then we can compute the tangent line at this point.
It's slope at x = —1 is given by the differential equation

y(-1)=-1-4==5. (15)
Thus the equation for the tangent line

y(x)=4-5(x+1) (16)
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Euler's Method

Since we expect the solution to the differential equation and its
tangent line to be close when x is close to —1. We should also
expect that the solution to the differential equation at, let's say
x = —0.75 will be closed to the tangent line at x = —0.75.
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Euler's Method

Since we expect the solution to the differential equation and its
tangent line to be close when x is close to —1. We should also
expect that the solution to the differential equation at, let's say
x = —0.75 will be closed to the tangent line at x = —0.75.
The y-value of the tangent line is

y(=0.75) = 4—5(—075+41)
— 275
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Euler's Method

Since we expect the solution to the differential equation and its
tangent line to be close when x is close to —1. We should also
expect that the solution to the differential equation at, let's say
x = —0.75 will be closed to the tangent line at x = —0.75.
The y-value of the tangent line is

y(=0.75) = 4—5(—075+41)
— 275

The tangent line equation for x = —0.75 and y = 2.75 is given by

y(x) =275 — 3.5(x + 0.75)

Reseasch Methodolbgy Took: 1. Numerncal Methods



Euler's Method

By using the tangent line equation for x = —0.5 we obtain
y(—05) = 275 — 3.5(—0.5+0.75)
= 1.87V5.
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Euler's Method

By using the tangent line equation for x = —0.5 we obtain
y(—05) = 275 — 3.5(—0.5+0.75)
= 1.87V5.

And if we continued the process, we can obtain the solution of
(13) approximately. The graph of tangent line is given in Figure 3
below.
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Euler's Method

By using the tangent line equation for x = —0.5 we obtain
y(=05) = 275-35(-05+40.75)
= 1.875.

And if we continued the process, we can obtain the solution of
(13) approximately. The graph of tangent line is given in Figure 3
below.

Iterations

Reseasch Methodobgy Tock: 1. Numercal Methods



Euler's Method

The procedure of Euler's method is given below:
Star at the point (xg, yo), let h denote the x-increment. Then
x1 = g + h, where y is the y-coordinate of the point on the line

passing through (xg, yo) with slope ¥'(x0) = f(x0, o). Thus

y1 = yo + hf(x0, yo)
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Euler's Method

The procedure of Euler's method is given below:
Star at the point (xp, yo), let h denote the x-increment. Then
x1 = Xo + h, where y; is the y-coordinate of the point on the line

passing through (xq, yo) with slope y'(x%) = f(x0, ¥o). Thus
y1 = Yo+ hf(xo, yo)

The next approximation is found by replacing xp and vy by x; and
Y. SO.

X2 = x1+h and y:=y1+hf(xl,y1)

xk = xk—1+h and yk = yi_1+ hf(xe_1, y-1)

Reseasch Methodobgy Took: 1. Numercal Methods



Euler's Method

In general, we obtain the following formula forn =1,2,3,---

Xp=Xp_1+h and y, = va_1+ Pf(x0_1, Vo_1)
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Euler's Method

In general, we obtain the following formula forn =1,2,3,---
Xp=Xp_1+h and y, = va_1+ Pf(x0_1, Vo_1)

We obtain the better approximation if we reduce the step size h.
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Euler's Method

The following graph give approximations for step size h = 0.25,
h=01 and h=001.
For this example it is not hard to compute the exact solution

y =—14 e~ 1+
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Euler's Method =

sl Eeat Solumon

= h=0 25

Figure: Exact solution vs Approximate solution with h = 0.25
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Euler's Method -

00

Figure: Exact solution vs Approximate solution with h = 0.1
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Euler's Method =

——Toact Solutce

h=001

Figure: Exact solution vs Approximate solution with h = 0.01
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Euler's Method

1.2 Euler’s Algorithm

To approximate the solution of initial-value problem
Yy =f(x,t), a<t<bh yla)=a

at (N + 1) equally spaced numbers in the interval [a, b].
INPUT: Endpoints a and b; Integer N; Initial condition a.
OUTPUT: Approximation w to y at the (N 4 1) values of t.

Step 1 Sethz%i; t=a,w=a
OUTPUT (t, w)
Step 2 Fori=1,2,--- ,N do Step 2.1-2.2
Step 2.1 Set w = w4+ hf(t,w); Compute w;
t=a+ih Compute t;
Step 2.2 OUTPUT (t, w).
Step 3 STOP

v
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Fourier Series

1. Practical Harmonic Analysis
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Fourier Series

1. Practical Harmonic Analysis

C

Engineers often deal with systems that oscillate or vibrate.

L)

Therefore trigonometric functions play a fundamental role in
modeling such problems.

© Fourier approximation represents a systemic framework for
using trigonometric series for this purpose.
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Figure: (a) The square wave, (b) The sawtooth wave, (c) Non ideal (d)
contaminated by noise
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o A periodic function f(t) is one for which f(t) = f(t+4 L),
where T is a constant called the period that is the smallest
value for which this equation holds.

o Any waveform that can be described as a sine or cosine is
called sinusoid:

f(t) =A+ G COS(wot 4 9)

Four parameters serve to characterize the sinusoid:

The mean value Ag sets the average height above the abscissa.
The amplitude C; specifies the height of the oscillation.

The angular frequency wg characterizes how often the cycles
occur.

The phase angle, or phase shift, t parameterizes the extent
which the sinusoid is shifted horizontally.
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1.1 Least-Squares Fit of a Sinusoid

o Sinusoid equation can be thought of as a linear least-squares
model
Y= AO + Al COS(&‘of) — 81 Sin(wot) + e

o Thus our goal is to determine coefficient values that minimize

N
S =Y {yi — (Ao + Ar cos(wot;) + By sin(wot;))}?
=1
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Fourier Series

Where the coefficients can be determined as

D
o= 57

2
A = NZycos(uot)

2 :
B, = NZysm(o;ot)

Example

The curve in Figure below is described by

y = 1.7 + cos(4.189t + 1.0472). Generate 10 discrete vlues for this
curve at intervals of At = 0.15 for the range t =0 to 1.35. Use
this information to evaluate the coefficients of Ag, A1, By by least
squares fit,
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Figure: A plot of the sinusoidal y(t) = Ag + G cos{wot + #)
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The data required to evaluate the coefficients with « = 4.189 are

f y y cos(wilt) |y sin{wit)
0.00 2.200 2.200 0.000
0.15 1.595 1.290 0.938
0.30 1.031 0.319 0.981
0.45 0.722 -0.223 0.687
0.60 0.785 -0.636 0.462
0.75 1.200 -1.200 0.000
0.50 1.805 -1.460 | -1.061
1.05 2.359 0,732 2.253
1.20 2,674 0.828 -2.547
1.35 2.614 2.115 -1.536

Sum| 17.000 2502 | 4331

Figure: data

For this case Ag = 122 =17, A; = 2(2.502) = 0.500 and
B = %(—4.330) = —0.866
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Thus, the least-squares fit is
y = 1.7 + 0.500 cos(wqt) — 0.866 sin(wgt)
The model can also be express by

y =17+ cos(wpt + 1.0472)

where
¢ —0.866
# = arctan ( - J = 1.0472,
\ 0.500
G = /(0.5)%+ (—0.866)> =1.00
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1.2 Continuous Fourier Series
Harmonic Analysis is the theory of expanding a given function in
Fourier series.
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Fourier Series

1.2 Continuous Fourier Series

Harmonic Analysis is the theory of expanding a given function in
Fourier series.

The coefficients of a function f(x) with period 27 in the interval
(—m, ) are given by
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1.2 Continuous Fourier Series

Harmonic Analysis is the theory of expanding a given function in
Fourier series.

The coefficients of a function f(x) with period 27 in the interval
(—m, ) are given by

. l/ F(x) dx (17)

m
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1.2 Continuous Fourier Series

Harmonic Analysis is the theory of expanding a given function in
Fourier series.

The coefficients of a function f(x) with period 27 in the interval
(—m, ) are given by

. %/_ F(x) dx (17)
anp = %/j_ f(x) cos(nx) dx (18)

Reseasch Methodobgy Tock: 1. Numercal Methods



1.2 Continuous Fourier Series

Harmonic Analysis is the theory of expanding a given function in
Fourier series.

The coefficients of a function f(x) with period 27 in the interval
(—m, ) are given by

. i/ F(x) dx (17)

/j f(x) cos(nx) dx (18)

| f(x)sin(nx) dx (19)
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When f(x) is given an analytical form, the integrals in the right
hand side (17) - (19) can be evaluated and the Fourier coefficients
ap, dn and b, can be determined completely.
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Fourier Series

When f(x) is given an analytical form, the integrals in the right
hand side (17) - (19) can be evaluated and the Fourier coefficients
ap, dn and b, can be determined completely.

However, in many practical problems, the functions f(x) is in
tabulated form.
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Fourier Series

When f(x) is given an analytical form, the integrals in the right
hand side (17) - (19) can be evaluated and the Fourier coefficients
ap, dn and b, can be determined completely.

However, in many practical problems, the functions f(x) is in
tabulated form.

So that the practical harmonic analysis deals with the
determination of the approximate value of the Fourier coefficients
ay, a4, and b,.
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When f(x) is given an analytical form, the integrals in the right
hand side (17) - (19) can be evaluated and the Fourier coefficients
ag, ap and b, can be determined completely.

However, in many practical problems, the functions f(x) is in
tabulated form.

So that the practical harmonic analysis deals with the
determination of the approximate value of the Fourier coefficients
ag, 3, and b,.

Divide the interval [—m, 7] into n equal parts with (n+ 1) points
—T =X, X1, X2, 3 Xp =TT

- . b
and subinterval size h = %
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Fourier Series

Let yv; = f(x;), for i =0,1,2,--- ,n.
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Let yv; = f(x;), for i =0,1,2,--- ,n.

The integrals on the RHS of (17) - (19) are approximately
evaluated using, rectangular formula (area = sum of n rectangles
=3 i, width, h x ordinate, y;.

L=
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Let y; =f(x;), for i =0,1,2,--- ,n

The integrals on the RHS of (17) - (19) are approximately
evaluated using, rectangular formula (area = sum of n rectangles
= Y i, width, h X ordinate, y;.

Then the Fourier coefficients (17) - (19) are determined
approximately by the following:

Ny AP, R

i
=1

or
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Also
1 T 1 p n \
a, = _/ f(x) dx = = Z h - y; cos nx; |
T J_x oA\ = /
1 27
= —.— ) y; cosnx;.
T ¢ SR
=1
or,
aj= gznj ¥; €OS nx;. (21)
m o
=1
Similarly,
2 n
by = — Z yi sin nx; (22)
" ‘,=1
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When f(x) is given in the form of a graph, Fourier analyzer
instruments determine the approximate values of the Fourier
coefficients a5, a, and b,'s.
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Fourier Series

When f(x) is given in the form of a graph, Fourier analyzer

instruments determine the approximate values of the Fourier
coefficients a5, a, and b,'s.

Mote: Choose n as a number divisibly by 4 since the values of sine
and cosine are repeated in four quadrants. Usually, choice
n=6,12, 24 (in which case (20), (21) and (22) get simplified).
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Fourier Series

Example

Compute approximately the Fourier coefficients a;, a4, 85, a5 and
by, by, by in the Fourier series expansion of function tabulated as
follows. Find the amplitude and the first harmonic. Calculate y(3).

x:0 1 2 3 4 5
y: 9 18 24 28 26 20

Solution:
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Fourier Series

Example

Compute approximately the Fourier coefficients a;, a4, 85, a5 and
by, by, by in the Fourier series expansion of function tabulated as
follows. Find the amplitude and the first harmonic. Calculate y(3).

x:0 1 2 3 4 5
y: 9 18 24 28 26 20

Solution:

The number of sub interval (n) = 6. The interval (0, 27) is divided

into & sub-intervals of size 5;5—“ = 60",
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Fourier Series

Table 1.1

X g cosH | cos2f | cos3f | v | ycosH | vcos2f | yvcos 3@
0| 0° 1 1 1 9 9 9 9
1| 60° | 41/2| -1/2 -1 18 —9 -9 —18
2 (120° | -1/2 | —1/2 1 24 —12 —12 24
3| 180° -1 +1 -1 28 —28 28 —28
4| 2400 | —-1/2 | -1/2 1 26 -13 -13 26
5300° | +1/2| -1/2 -1 20 10 -10 -20

5 125 -25 -7 -7
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Fourier Series

M ow
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Fourier Series

M ow,

Zyj = 215 = 41.666
i=1
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Fourier Series

M ow,

Zyj = 215 = 41.666
i=1

2 — 2
a; = EZ];,- Cos X; = E{—Eﬁj = —8.333
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Now,

ao__zy,__h = 41.666

2 — 2
a = ;; yicosx; = =(~25) = —8.333

2 o 2
a = ;Z; yicos2x; = =(—7) = ~2.333
I—
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Now,

ao__zy,__h = 41.666

2 2
a1 =-) yicosx; = =(~25) = —8.333

: 6
=1
2e 2
3= ’E—l i €os 2x; = —6—(—7) = —2.333
s 2
ay == ’E_l yi €os 3x; = 6(_7) =—-2.333
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Fourier Series

Similarly,
Table 1.2
X a8 sinf | sin2f | sin38 | y | ysin# | ysin 26 | vsin 38
0] 0° | © 0 0 9 0 0 0
1| 60° | L2 | 2 0 |18 | 93 | 9V3 0
2 (120° | 2 | 3| 0 | 24| 12v/3 | -12v3| 0
3(0180° | O 0 0 | 28| 0 0 0
4|240° | -2 | 2 | 0 | 26 |-13%2 | 13 0
'3 /3
53000 |- | -2 | 0 |20]-1 D-‘jzj -1022 0
S [ 125 | -24/3 0 0
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Fourier Series

Hence
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Fourier Series

Hence

Z}n sin x; = 2\:’3] —1.1547
=1
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Fourier Series

Hence

Z}n sin x; = 2\:’3] —1.1547
=1

2 2
= E;Ff sin 2x; = E[D] =0
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Hence

2~ . 2 —
by =~ Zly; sin x; = =(—2V'3) = ~1.1547

2 ¢ 2
by = ;;y,’sm 2% = 6(0) =0,

bs; =0.

Amplitude of the first harmonic
= /& + B = \/[~8333 + (-L.1547] = 8.4126.
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Fourier Series
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The Fourier series of y(x) containing the first 4 cosine terms and 3
sine terms is

41666

y + (—8.333) cos x — 2.333 cos 2x+

(—2.333)cos 3x 4+ (—1.1547)sinx+ 0+ 0
Atx=30=m

W3} = jlx) = 41'2666+(_s_333)(-1)_2.333(1)-

(—2.333)(—1) — 1.1547(0) = 29.166

The exact value y(3) = 28
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The Graph of the Data and Fourier series expansion is given on the
next figure.

Table 1.3: Fourier Series

X y theta ™y

0 9 0.00 7.830
1 18 1.05 15.171
2 24 2.09 22.830
3 28 3.14 29.170
4 26 4.19 24 828
2 20 0.00 7.830
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e 1o SErims

Expansion

w—r \
Crgnal Doty

Figure: of the Fourier
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Partial Differential Equation

An equation involving partial derivatives of an unknown function of
two or more independent variables.

General form of FDE
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Partial Differential Equation

An equation involving partial derivatives of an unknown function of

two or more independent variables.
General form of PDE

8 a2 9?2
U+ B u + C u

ax?2 dydx ay?

du au

Could be classified into 3 types: parabolic, hyperbolic and elliptic,
depending on the sign of BZ — 4AC.
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If BZ — 4AC = 0 — parabolic

Heat equation:

ax2 ' kot
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If B2 — 4AC > 0 — hyperbalic

Wave equation:
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If B* — 4AC = 0 — elliptic

Example

Laplace's equation:

7y Au

—+ s Fulxy)=1

Reseasch Methodolbgy Took: 1. Numerncal Methods



PDE

To solve, we use the finite-difference methods as follows:

1st Step Choose n and m, and define

a—>b k:c_d

hzh’ m

— Partition [a, b] into n equal parts of width h and
[c, d] into m equal parts of width k.

— Place a grid on the rectangular R by drawing
vertical & horizontal lines through the points with
coordinates (x;, y;j), where

xi = a+ih, yi=c+jk, (i=0,1,---n;j=0,1,---,m)

— The line x = x; and y = y; are grid lines and their
intersections are the mesh points of the grid.
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2nd Step For each mesh points in the interior of the grid
(xi,yi ), (i=1,2,---,n—=1;j=1,2,--- ;m—1), we
use Taylor's series to generate the finite-difference
formula.

o The forward-difference formula for us(x, y) & u.(x, t):

\at/ij B \ax/ij h

FauN _Ujj41— Ui (E)U'\ Ui — Ui

o Centered-difference formula for us(x, y) & we(x, t):

(ouy  Uijgr — Ujja (
at/ iy 2k ;

au U Ui

&1‘ IJ 2h
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o The backward-difference formula for we(x, y) & u.(x, t):

au Ujj — Uij—1 ‘ou Ui j — Ui—1;

\ ot/ i k : \ax/ij h

o Centered-difference formula for ug(x, y) & uwl(x, t):

~N?
(O“U') 255 Uij4+1 — 2U; j + Ujj—1
\ iy

at2, k2 '
('E)QU‘ . U;+1J—2U,'J'+ Ui_1y
ax2/)ij h?
The resulting system equations can be solved by Gauss-Seidel

method.
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Example & Exercise (Partial Differential Equations)
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Thanks
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